
Macintosh Technical Notes

New Technical Notes

Developer Support

®Macintosh

Script Manager Variables
Text M.TE.ScriptVars

Written by: John Harvey & Peter Edberg June 1989

This Technical Note describes, in detail, the local and global script variables.

Introduction

The Script Manager maintains a number of global variables which can be read with the
routine _GetEnvirons. These variables can be set by a corresponding routine,
_SetEnvirons. In addition, each script interface system maintains variables of its own.
These are referred to as local variables in Inside Macintosh, Volume V-293, The Script
Manager, and are read by _GetScript and set by _SetScript.

Think of it like this: the Script Manager maintains an environment in which different script
interfaces can run. The global variables are used to set up and maintain the environment
(thus the names for the routines _GetEnvirons and _SetEnvirons), and the local
variables control how the script itself works (so we have _GetScript and
_SetScript).

Global Variables

When you call _GetEnvirons or _GetScript, you describe the variable you are
interested in with a verb. A verb is simply an integer constant which the Script Manager
uses to figure out which variable you want to read or set. The table in Inside Macintosh, V-
313, gives incorrect names and descriptions for some of the _GetEnvirons and
_SetEnvirons verbs. Table 1 provides correct descriptions.

Developer Technical Support June 1989

Macintosh Technical Notes

Constant Value Meaning
smVersion 0 Script Manager version number
smMunged 2 Global modification count
smEnabled 4 Script count; 0 if Script Manager not enabled
smBidirect 6 Bidirectional script flag

smFontForce 8 Force font flag
smIntlForce 10 Force international utilities flag
smForced 12 Current script forced to system script
smDefault 14 Current script defaulted to Roman script

smPrint 16 Print action vector

smSysScript 18 Preferred system script
smLastScript 20 Last keyboard script
smKeyScript 22 Keyboard script

smSysRef 24 System folder volRefNum
smKeyCache 26 [Obsolete, do not use]
smKeySwap 28 Keyboard swapping resource handle

smGenFlags 30 General flags
smOverride 32 Script override flags
smCharPortion 34 Ch vs Sp Extra proportion, 4.12 fixed

Table 1–Verbs for _GetEnvirons and _SetEnvirons

The descriptions in the table are still a bit sketchy. The next section describes each variable
in more detail and describes the size of each global.

Byte or word globals are mapped to the low-order byte or word of the LongInt returned by
_GetEnvirons, with the high-order parts set to zero. Similarly, for these globals
_SetEnvirons ignores all but the appropriate part (low-order byte or word) of its params
value.

Verb Name Bytes Brief Description

smVersion 2 Script Manager version number

At boot time, the version global is initialized to the value SMgrVers. The high byte is the
major version number and is defined in the MPW interface files. The low byte is updated
when any changes are made to the Script Manager.

Developer Technical Support June 1989

Macintosh Technical Notes

smMunged 2 Global modification count

The munged global is initialized to zero at boot time and incremented when:
• _KeyScript changes the key script and updates smKeyScript and

smLastScript
• _SetEnvirons is used to change a Script Manager global

smEnabled 1 Script count; 0 if Script Manager not enabled

Developer Technical Support June 1989

Macintosh Technical Notes

At boot time or switch-launch time, the enabled global is initialized to zero, then
incremented for each script that is installed and enabled. Since the Roman script system
should always be installed by the Script Manager, a value of zero indicates that the Script
Manager is not enabled.

It should be noted that older versions of the Script Manager treated this as a Boolean. In
other words, if there was more than one script installed, _GetEnvirons(smEnabled)
would return 255 (when _GetEnvirons returns a Boolean value $FF represents true).

For this reason, when testing to see if more than one script is installed, it is best to test as
follows:

scriptsinstalled := GetEnvirons(smEnabled);
IF scriptsinstalled > 1 THEN
{more than one script available, use Chartype, etc.}

smBidirect 1 Bidirectional script flag

The bidirectional global indicates that at least one bidirectional script is installed. It should be set to true ($FF) by the Arabic and Hebrew script
systems. This is not presently done, but will be corrected in future versions of these systems.

smFontForce 1 Force font flag
smIntlForce 1 Force international utilities flag
smForced 1 Current script forced to system script
smDefault 1 Current script defaulted to Roman script

At boot time, FontForce and IntlForce are set from the 'itlc' resource, and Forced and Default are set to zero. These are all
flags with the value zero for false and $FF for true. FontForce and IntlForce control the operation of the _FontScript,
_Font2Script, and _IntlScript routines. Forced and Default report the actions of these routines.

Setting FontForce to true forces Roman fonts to be interpreted as belonging to the system script. This is for compatibility with applications
that hard-code font numbers.

IntlForce determines the behavior of the _IUGetIntl call. When intlforce is set to true, _IUGetIntl will return a handle to the
international resources (of type 'itlx' where x is 0-2) for the system script. When IntlForce is false, the _IUGetIntl will use the font
of the current port to determine the appropriate resources to fetch. Thus date formats, sorting, etc. can reflect the current script.

smPrint 4 Print action vector

Print action routine vector; set up at boot time. See M.TE.PrintAction.

smSysScript 2 Preferred system script
smLastScript 2 Last keyboard script
smKeyScript 2 Keyboard script

At boot time and switch-launch time, SysScript and KeyScript are set from the SysScript field of the 'itlc' resource if that script
is installed and enabled; otherwise, SysScript and KeyScript are set to Roman (without setting Default).

Developer Technical Support June 1989

Macintosh Technical Notes

The KeyScript global is the current keyboard script, tested and updated by the _KeyScript routine. When _KeyScript changes
KeyScript, it moves the old value to LastScript. _KeyScript can also swap the current key script with the last one, which it retrieves
from LastScript. The KeyScript value is also used to get the proper keyboard script icon and to retrieve the proper 'KCHR'.

SysScript specifies the system script, and is used, for example, by _FontScript, _Font2Script, and _IntlScript.

KeyScript, LastScript, and SysScript always contain integers that correspond to a script number. Script numbers are documented in
The Script Manager chapter of Inside Macintosh, Volume V-293.

smSysRef 2 System folder volRefNum

Set from the global BootDrive at boot time and switch-launch time. SysRef was originally a way of testing for vanilla launch versus switch
launch; now the Enabled global is used for that purpose.

smKeyCache 2 [Obsolete, do not use]

smKeySwap 4 Keyboard swapping resource handle

The 'KSWP' resource handle is put here at boot time and switch-launch time. A 'KSWP' resource contains a table of key sequences that will
cause the currently installed 'KCHR' (keyboard mapping table) to change to the preferred system 'KCHR', switch to the Roman 'KCHR', or
rotate among the available 'KCHR' resources. The table includes the virtual key code and the modifier keys. The following is the 'KSWP'
resource for the Kanji script interface system.

resource 'KSWP' (0, sysheap) {
{/* array: 3 elements */

/* [1] */
Rotate, 49, controlOff, optionOff, shiftOff, commandOn,
/* [2] */
System, 70, controlOff, optionOff, shiftOff, commandOn,
/* [3] */
Roman, 66, controlOff, optionOff, shiftOff, commandOn

}
};

The resource says rotate 'KCHR' resources if a Space–Command key occurs, switch to the system 'KCHR' on keypad plus (+)–Command
key, and switch to the Roman 'KCHR' on keypad asterisk (*)–Command key.

smGenFlags 4 General flags

Only the two high-order bits are defined (in the file ScriptEqu.a), as follows:

smfShowIcon = 31 (show icon even if only one script)
smfDualCaret = 30 (use dual caret for mixed direction text)

Developer Technical Support June 1989

Macintosh Technical Notes

The high-order byte of smgrGenFlags, containing these flags, should be setup from the flags byte in the 'itlc' resource.
This is not presently done, but will be fixed in future versions of the Script Manager.

The following MPW Pascal procedure demonstrates how to get script 'SICN' resources to display even if there is only one
script system installed.

PROCEDURE SetSICN;
VAR

SICNstate: Longint;
err: Oserr;

BEGIN
SICNstate := GetEnvirons(smGenFlags);
BSET(SICNstate,smfShowIcon);

err := SetEnvirons(smGenFlags,SICNstate);
END;

smOverride 4 Script override flags

At present, this is not set or used by the Script Manager. It is, however, reserved for future improvements.

smCharPortion 2 Ch vs Sp Extra proportion, 4.12 fixed

This is 16-bit fixed-point value in 4.12 format (e.g., 10% = $0199). It is initialized to 10 percent at boot time. It is intended to be used by script
systems to allocate space among intercharacter spacing and interword spacing when justifying text.

A 16-bit fixed-point value in 4.12 format is similar to the fixed-point number type defined on page I-79 of Inside Macintosh . The obvious
difference being that it is only 16 bits long. The integer part of the value is stored in the high four bits, and the fractional part is stored in the
low 12 bits.

sign
bit 2 1 1

2 4
1 1

8
1
16

1
32

1
64

1
128

1
256 512

1 1
1024

1
2048

1
40964

16-bit Fixed-Point Number in 4.12 format

Local Variables

Every script interface system has local variables. Page V-132 of Inside Macintosh lists verbs
which are constants that indicate which variable you want to read or set. The table of
constants used to access the local variable, although more accurate than the global table,
does contain a few inaccuracies. In addition four new constants have been added. Table 2
gives the correct constants.

Constant Value Meaning
smScriptVersion 0

Script Interface version number
smScriptMunged 2 Local modification count
smScriptEnabled 4

Script Enabled Flag
smScriptRight 6 Right to Left Flag

Developer Technical Support June 1989

Macintosh Technical Notes

smScriptJust 8 Justification Flag
smScriptRedraw 10 Word Redraw Flag
smScriptSysFond 12

Preferred System Font
smScriptAppFond 14

Preferred Application Font
smScriptNumber 16 Script 'itl0' ID
smScriptDate 18 Script 'itl1' ID
smScriptSort 20 Script 'itl2' ID
smScriptFlags 22 Script Flags Word (new)
smScriptToken 24 'itl4' ID number (new)
smScriptRsvd 26 Reserved
smScriptLang 28 Script’s language code (new)
smScriptNumDate 30

Number/date representation codes (new)
smScriptKeys 32 Script 'KCHR' ID
smScriptIcon 34 Script 'SICN' ID

smScriptPrint 36 Script printer action routine
smScriptTrap 38 Trap entry pointer

smScriptCreator 40
Script file creator

smScriptFile 42 Script file name
smScriptName 44 Script name

Table 2–Local Variable Constants

Here again the descriptions are a little terse. The following section describes each variable
in more detail and describes the size of each variable.

Verb Name Bytes Brief Description

smScriptVersion 4 Script Interface version number

When the script interface is loaded, this is set to the current version number.

smScriptMunged 2 Local modification count

This variable is incremented each time _SetScript is called.

smScriptEnabled 1 Script Enabled Flag

A Boolean which indicates whether the script has been enabled. Set to $FF when enabled
Developer Technical Support June 1989

Macintosh Technical Notes

and zero when not enabled.

smScriptRight 1 Right to Left Flag

A Boolean indicating if text should be drawn right to left or left to right. It is set to $FF
for right to left text (Arabic and Hebrew scripts) and zero for left to right (Roman).

smScriptJust 1 Justification Flag

Developer Technical Support June 1989

Macintosh Technical Notes

A byte flag which describes how text should be justified. The possible settings correspond
to the justification flags used by TextEdit.

0 = left justification
1 = center justified
-1 = right justified

smScriptRedraw 1 Word Redraw Flag

A byte flag describing how much of a line should be redrawn when text is being entered.

0 Only draw a character
1 Redraw the entire word
-1 Redraw the entire line (Arabic)

smScriptSysFond 2 Preferred System Font

This is the font family ID for the preferred System Font. In a Roman system,
ScriptSysFond is 0, the family ID for Chicago.

smScriptAppFond 2 Preferred Application Font

Font family ID for the preferred Application Font. In a Roman system, ScriptAppFond
is 3, the family ID for Geneva.

smScriptNumber 4 Script 'itl0' ID

Resource ID of 'itl0' for this script. The 'itl0' resource describes how numbers and
times should be displayed. The resource ID should match the country version code for a
given country.

smScriptDate 4 Script 'itl1' ID

Resource ID of the 'itl1' for this script. The 'itl1' describes how dates should be
displayed.

smScriptSort 4 Script 'itl2' ID

Resource ID of the 'itl2' for this script. The 'itl2' contains routines for sorting. See
M.TE.NewStringComp.

smScriptFlags 2 Script flags

This verb provides access to the script flags word, which contains bit flags that describe

Developer Technical Support June 1989

Macintosh Technical Notes

features of the script. This word is initialized from the script’s 'itlb' resource. Constants
specifying the bit numbers are described in Table 3.

Developer Technical Support June 1989

Macintosh Technical Notes

Constant Bit NumberDescription
smsfIntellCP 0 script has intelligent cut and paste
smsfSingByte 1 script has only single bytes
smsfNatCase 2 native characters have upper and lower case
smsfContext 3 contextual script (e.g., AIS-based)
smsfNoForceFont 4 will not force characters
smsfB0Digits 5 has alternative digits in B0-B9
smsfForms 13 uses contextual forms for letters
smsfLigatures 14 uses contextual ligatures
smsfReverse 15 reverses native text, right-left

Table 3–Constant Bit Numbers

smScriptToken 2 Script 'itl2' ID

Resource ID of the 'itl4' for this script. The 'itl4' contains contains tables needed by the number formatting and
conversion routines and the _intlTokenize routine. See Script Manager 2.0, Interim Chapter.

smScriptRsvd 4 Reserved

smScriptLang 2 Script’s language code

This verb accesses a word which contains the current language code for the script. The language codes are defined in the MPW
interface files.

smScriptNumDate 2 Number and date representation codes

This verb accesses a word containing the number and date representation codes for the script. The number representation code is
in the high byte of the word, and the date code is in the low byte.

The possible values for number representations and date codes are declared as constants in the MPW interface files.

The number codes are: and the date codes are:

intWestern = 0; calGregorian = 0;
intArabic = 1; calArabicCivil = 1;
intRoman = 2; calArabicLunar = 2;
intJapanese = 3; calJapanese = 3;
intEuropean = 4; calJewish = 4;

calCoptic = 5;

smScriptKeys 4 Script 'KCHR' ID

Resource ID of preferred 'KCHR' resource. The 'KCHR' resource is used to map virtual key codes into the correct character
code. See M.TB.KeyMapping.

Developer Technical Support June 1989

Macintosh Technical Notes

smScriptIcon 4 Script 'SICN' ID

Resource ID of the small icon that is used to represent which country specific resources ('itl0', 'itl1', 'itl2', 'KCHR')
are currently installed in the system. Presently, the Roman system does not display the 'SICN'. Arabic, Kanji, Chinese, and
Hebrew interface systems do display this icon in the upper-right corner of the menu bar.

smScriptPrint 4 Script printer action routine

Print action routine vector; setup when script is installed by Script Manager. See M.TE.PrintAction.

smScriptTrap 4 Trap entry pointer

Pointer to Script dispatch routine. Script Manager routines always belong to one of two groups. The first group of routines are
common to every script interface system, and the second group must be supplied by the script interface system. This variable will
point to a dispatch routine for the interface-supplied routines. When you call _ScriptUtil, it looks at the selector that is
passed and either calls a common routine or calls the routine whose address is stored in ScriptTrap. The routine in
smScriptTrap will then use the selector to vector to the correct routine. In general, routines that display or measure text in
some way will be supplied by the interface.

A list at the end of this Note indicates which routines are implemented by the Script Manager and which routines are supplied by
a script interface system.

smScriptCreator 4 Script file creator

The four character creator type for the script interface’s file. For Roman it is “ZSYS,” the same creator as any system file has.

smScriptFile 4 Script file name

A pointer to the a Pascal string which contains the name of the file containing the script interface system. For the Roman SIS, it is
System.

smScriptName 44 Script name

A pointer to a Pascal string which contains the script interface’s name. For Roman it is naturally, “Roman.”

Developer Technical Support June 1989

Macintosh Technical Notes

Who Does What?

Table 4 breaks the documented routines into common Script Manager routines and interface
specific routines.

Common Routines Interface Supplied
_FontScript _CharByte
_IntlScript _CharType
_KeyScript _Pixel2Char
_GetEnvirons _Char2Pixel
_SetEnvirons _Transliterate
_Font2Script _FindWord
_Format2Str _HiliteText
_FormatStr2X _DrawJust
_FormaX2Str _MeasureJust
_GetFormatOrder _ParseTable
_InitDateCache _VisibleLength
_IntlTokenize _FindScriptRun
_LongDate2Secs _PortionText
_LongSecs2Date
_Str2Format
_String2Date
_String2Time
_StyledLineBreak
_ToggleDate
_ValidDate

Table 4–Script Manager Routines and Interface Specific Routines

_GetScript and _SetScript, which return the values of local script variables, are
implemented by the Script Manager for some verbs and the script interface system for
others.

There is also a group of Script Manager routines which don’t use the _ScriptUtil trap,
but are documented in The Script Manager chapter of Inside Macintosh, Volume V-293 or
The Script Manager 2.0 Interim Chapter. There routines are utilities that read and write to
low-memory or PRAM. It is important to use these routines when they are available. That
will allow Apple to modify where global variables, etc. are stored, and your application will
remain compatible. The utilities are:

GetDefFontSize
GetSysFont
GetAppFont
GetMBarHeight
GetSysJust
SetSysJust

Developer Technical Support June 1989

Macintosh Technical Notes

ReadLocation (documented in Interim Chapter)

Developer Technical Support June 1989

Macintosh Technical Notes

WriteLocation (documented in Interim Chapter)

Further Reference:
• Inside Macintosh, Volume V-293, The Script Manager
• M.TB.KeyMapping
• M.TE.PrintAction

Developer Technical Support June 1989

